欧美视频一区二区三区四区,91极品反差婊在线观看,欧美综合社区国产,免费国产99久久久香蕉

0510-83591626
新聞動(dòng)態(tài) 公司新聞 > 行業(yè)新聞 >
0510-83591626
史上最全先進(jìn)高強鋼概述(第一代到第三代) 發(fā)布時(shí)間:2018-06-20   瀏覽量:3222次

先進(jìn)高強鋼概述

Introduction to Advanced High Strength Steels



一、引言

歐洲車(chē)身會(huì )議(ECB大會(huì ))對汽車(chē)用鋼板的分類(lèi)是按照冶金學(xué)的組織類(lèi)型來(lái)分類(lèi)的,將鋼種分為傳統軟鋼、高強度鋼、先進(jìn)高強度鋼和超高強度鋼等。

先進(jìn)高強度鋼(Advanced High Strength SteelsAHSS),是具有復相組織的材料,通過(guò)嚴格控制加熱和冷卻工藝達到所要的化學(xué)成分和復相微結構,并采用各種強化機制來(lái)實(shí)現不同強度、延展性、韌性和疲勞性能。




二、性能

在過(guò)去,鋼鐵的抗拉強度超過(guò)550 MPa,可以歸為先進(jìn)高強度鋼,而抗拉強度超過(guò)780 MPa歸為超高強度鋼,然而,當下多相先進(jìn)高強度鋼的最低抗拉強度是440 Mpa,因此將強度作為界定先進(jìn)高強鋼的標準不再適用。抗拉強度為1000 MPa的先進(jìn)高強度鋼通常也稱(chēng)之為1GPa鋼。第三代先進(jìn)高強度鋼有望在低成本前提下實(shí)現相當或更優(yōu)的性能。

1.jpg

鋼種的強度-延性圖

IF—無(wú)間隙原子鋼;Mild—低碳鋁鎮靜鋼;

IF-HS—高強度IF鋼;BH鋼—烘烤硬化剛;

CMn—碳錳鋼;HSLA—高強度低合金鋼;

DP—雙相鋼;CP—復相鋼;

TRIP—相變誘導塑性鋼;

MS—馬氏體鋼;TWIP—孿晶誘導塑性鋼

 

先進(jìn)高強度鋼材料性能概覽(包含HSLA鋼)


序號

牌號

Min Yield Strength

Min Tensile Strength

MPa

MPa

1

DP210/440

210

440

2

DP 300/500

300

500

3

FB 330/450

330

450

4

HSLA 350/450

350

450

5

DP 350/600

350

600

6

TRIP 350/600

350

600

7

TRIP 400/700

400

700

8

HSLA 420/500

420

500

9

FB 450/600

450

600

10

TRIP 450/800

450

800

11

HSLA 490/600

490

600

12

CP 500/800

500

800

13

DP 500/800

500

800

14

TWIP 500/900

500

900

15

TWIP 500/980

500

980

16

HSLA 550/650

550

650

17

CP 600/900

600

900

18

TWIP 600/900

600

900

19

DP 600/980

600

980

20

TRIP 600/980

600

980

21

Q&P 650/980

650

980

22

CP 680/780

680

780

23

TPN 680/780

680

780

24

HSLA 700/780

700

780

25

DP 700/1000

700

1000

26

CP 750/900

750

900

27

TPN 750/900

750

900

28

DP 750/980

750

900

29

TRIP 750/980

750

980

30

TWIP 750/1000

750

1000

31

CP 800/1000

800

1000

32

DP 800/1180

800

1180

33

CP 850/1180

850

1180

34

MS 950/1200

950

1200

35

TWIP 950/1200

950

1200

36

CP 1000/1200

1000

1200

37

MS 1050/1470

1050

1470

38

CP1050/1470

1050

1470

39

HF 1050/1500

1050

1500

40

DP 1150/1270

1150

1270

41

MS 1150/1400

1150

1400

42

HF 1200/1900

1200

1900

43

MS 1250/1500

1250

1500





三、分類(lèi)

世界鋼協(xié)根據研發(fā)歷史及其特點(diǎn),將AHSS鋼分為三代:

1)第一代AHSS鐵素體為基AHSS鋼的強塑積為15 GPa%以下,主要包括雙相( DP)多相( CP)相變誘導塑性( TRIP)鐵素體貝氏體鋼(FB/SF馬氏體鋼(MS/PHS)、硼鋼(HF);

2)第二代AHSS奧氏體為基AHSS鋼的強塑積為50 GPa%以上,主要包括奧氏體孿晶誘導塑性( TWIP) (主要鋼種)誘導塑性輕鋼(L-IP) 剪切帶強化(SIP)鋼;

3)第三代AHSS鋼以馬氏體、回火馬氏體、亞微米晶/納米晶組織或沉淀強化的高強度BCC組織,強塑積20 -40GPa%,主要包括TBF鋼(TRIP Aided Bainitic Ferrite steels),中錳鋼(medium Mn-Trip),Q&P鋼(Quenching-Partitioning Steel)。第三代AHSS鋼以“多相、亞穩、多尺度”為特征的組織調控理論的指導下,提出高強塑積第三代汽車(chē)鋼的超細晶基體與亞穩相的組織調控思路,采用新型中錳合金化和逆轉變奧氏體(ART)退火的技術(shù)思路

2.jpg

先進(jìn)高強鋼的組織結構與性能關(guān)系分析總結

圖陰影區域是第三代先進(jìn)高強鋼強塑積的研發(fā)目標,

下圖紅色區域表明第三代先進(jìn)高強鋼要含有30%~40%的亞穩奧氏體含量


第一代先進(jìn)高強鋼


3.1 DPDual-Phase Steel

3.1.1 顯微組織(Microstructure

DP鋼的顯微組織主要為鐵素體和馬氏體,馬氏體組織以島狀彌散分布在鐵素體基體上(如圖2所示)。鐵素體較軟,使鋼材具備較好的塑性。馬氏體較硬,使鋼材具備較高的強度DP鋼的強度隨較硬的馬氏體所占比例提高而增強。

4.jpg

DP鋼的顯微組織

3.1.2 性能特點(diǎn)

1)屈強比較低(一般為0.50.65),不僅易于加工,而且具有僅次于TRIP鋼的高延伸率

2)應變集中在低強度的鐵素體相上,使其具有獨特的高加工硬化率,尤其在低的應變區(2%3%),屈服強度提高很快(140220MPa);

3)無(wú)屈服延伸,無(wú)時(shí)效;

4)呈烘烤硬化特性(可達30150MPa);

5)良好地碰撞能量吸收性能。

3.1.3 應用

雙相鋼是先進(jìn)高強度鋼中應用最為廣泛的一類(lèi)鋼種。如表2所示,可看出雙相鋼C級車(chē)上所應用部件的使用情況。雙相鋼最適用于結構件及其加強件,在外板上也有廣泛的應用。雙相鋼在C級車(chē)上占到了整個(gè)結構用鋼的74%左右。對于450/500MPa級別的雙相鋼常用于車(chē)門(mén)外板等外露件,比標準鋼種的抗凹陷能力高20%,可有15%的減重潛能;而600/780/1000/1180MPa級別的雙相鋼則適用于生產(chǎn)各類(lèi)結構件和安全部件,常見(jiàn)的部件有縱梁、橫梁、車(chē)底十字構架、防撞加強構件、前翼構件、車(chē)輪等。

DP鋼在汽車(chē)部件中典型應用

牌號

在汽車(chē)部件中的應用

DP 300/500

Roof outer, door outer, body  side outer, package tray, floor panel

DP 350/600

Floor panel, hood outer,  body side outer, cowl, fender, floor reinforcements

DP 500/800

Body  side inner, quarter panel inner, rear rails, rear shock reinforcements

DP 600/980

Safety  cage components (B-pillar, floor panel tunnel, engine cradle,

front sub-frame package  tray, shotgun, seat1)

DP 700/1000

Roof rails

DP 800/1180

B-pillar upper

3.1.4 缺點(diǎn)

雙相鋼的沖壓回彈是該材料面臨的最大挑戰。由于冷軋雙相鋼的高強度級別,在沖壓成形過(guò)程中,材料必然存在較大的內應力。成形完成從模具中取出時(shí),材料的高內應力使零件很容易產(chǎn)生回彈,造成零件的扭曲與翹曲。

雙相鋼的沖壓開(kāi)裂則是另一個(gè)較大的挑戰。開(kāi)裂傾向主要是由于雙相鋼中的鐵素體和馬氏體兩種相之間的力學(xué)性能差異巨大,成形過(guò)程中在兩相的界面之間造成應力集中,從而引起界面間的開(kāi)裂。

3.2 CPComplex Phase steel

3.2.1 顯微組織

CP鋼的顯微組織以鐵素體/貝氏體為基體,含有少量的馬氏體、殘余奧氏體以及珠光體。通過(guò)再結晶和Ti/Nb等微量元素形成的析出相達到細化晶粒的目的。

5.jpg

CP 800/1000 熱軋鋼的顯微組織

3.2.2 性能特點(diǎn)

 CP鋼具有非常高的抗拉強度,與同等抗拉強度的雙相鋼相比,其屈服強度明顯要高很多,且有較高的能力吸收能力和較高的殘余應變能力,擴孔性能好。

3.2.3 應用

CP鋼在汽車(chē)部件中典型應用

牌號

在汽車(chē)部件中的應用

CP 600/900

Frame rails, B-pillar reinforcements

CP 680/780

Frame rails, chassis components, transverse beams

CP 750/900

B-pillar reinforcements, tunnel stiffener

CP 800/1000

Rear suspension brackets, fender beam

CP1000/1200

Rear frame rail reinforcements, rocker outer

CP1050/1470

Rocker panels, bumper beams

3.3 FBFerritic-Bainitic steel

3.3.1 顯微組織

FB鋼的顯微組織由鐵素體和貝氏體組成。FB鋼是過(guò)冷奧氏體在珠光體轉變和馬氏體轉變之間的中溫區域內發(fā)生的轉變而形成。

6.jpg

FB450/600鋼的顯微組織

3.3.2 性能特點(diǎn)

FB鋼具有良好地成型、焊接和疲勞性能。FB鋼的最大特點(diǎn)是具有良好地延伸凸緣性(擴孔性能)。

3.3.3 應用

FB鋼通常用于生產(chǎn)沖壓大、中型車(chē)身覆蓋件的激光對焊板坯或汽車(chē)底盤(pán)、車(chē)輪等載重件。

FB鋼在汽車(chē)部件中的應用

牌號

在汽車(chē)部件中的應用

FB 330/450

Rim, brake pedal armseat cross membersuspension arm

FB 450/600

Lower control arm, rim, bumper beam, chassis parts, rear twist beam

3.4 相變誘導塑性鋼Transformation InducedPlasticity SteelTRIP

3.4.1 顯微組織

TRIP鋼的顯微組織以鐵素體為基體,殘留奧氏體彌散分布在鐵素體上,也存在馬氏體和貝氏體。鋼中組織的合理配比、殘余奧氏體的穩定性決定了TRIP鋼的力學(xué)性能。

7.jpg

TRIP 690鋼的顯微組織

3.4.2 TRIP效應

TRIP效應是TRIP鋼在變形過(guò)程中,殘余奧氏體轉變?yōu)楦邚姸鹊母咛捡R氏體,同時(shí)伴隨著(zhù)體積膨脹,因而抑制了塑性變形的不穩定,增加了均勻延伸的范圍,故使得強度和塑性同時(shí)提高。

3.4.3 化學(xué)成分

TRIP鋼的成分以C-Mn-Si合金為主,根據具體情況添加少量的CrVNi等合金元素。其成分特征是低碳、低合金化、鋼質(zhì)純凈。

TRIP鋼中化學(xué)元素的作用

元素

含量

影響

C

<0.02%

穩定奧氏體;

提高顯微組織中殘余奧氏體含量;

影響成型、焊接性能;

Si

1.0%~1.5%

提高碳在鐵素體中的活度,增加過(guò)冷奧氏體的穩定性;

抑制碳化物的形成和析出;

縮小奧氏體相區;

Mn

1.0%~2.0%

穩定奧氏體;

使先共析鐵素體析出線(xiàn)右移;

3.4.4 性能特點(diǎn)

成型性能:TRIP鋼具有較高的平面應變特征點(diǎn)值,因此具有較好的極限變形能力;在雙向拉伸變形區域,TRIP鋼的安全成型度比DP鋼高,所以相同強度級別下的TRIP鋼的沖壓成形性?xún)?yōu)于DP鋼。

焊接性能:SiMn元素的加入使鋼板的焊接性能下降。

撞吸特性:TRIP鋼加工硬化速率變化較平緩,隨應變呈線(xiàn)性下降趨勢,因此在大變形階段,TRIP鋼的吸能特性顯著(zhù)。

3.4.5 應用

TRIP鋼應用于防撞結構件。

TRIP鋼在汽車(chē)部件中典型應用

牌號

在汽車(chē)部件中的應用

TRIP 350/600

Frame rails, rail reinforcements

TRIP 400/700

Side rail, crash box

TRIP 450/800

Dash panel, roof rails

TRIP 600/980

B-pillar upper, roof rail, engine cradle, front  and rear rails, seat frame

3.5 馬氏體鋼(Martensitic Steel

3.5.1 顯微組織

MS鋼的顯微組織以馬氏體為基體,少量的鐵素體或貝氏體彌散分布其中。馬氏體組織通過(guò)高溫奧氏體組織經(jīng)熱軋或冷軋連續退火后淬火形成,具有非常高的強度

馬氏體鋼的顯微組織

3.5.2 性能特點(diǎn)

馬氏體鋼具有非常高的強度,抗拉強度極限達到了1700MPa。馬氏體鋼經(jīng)等溫回火處理后可得到很好的成形性。

低碳馬氏體鋼具有良好地強度、塑性、韌性以及低的品奧傾向,同時(shí)還具有較低的缺口敏感性,過(guò)熱敏感性、優(yōu)良的冷加工性、良好地可焊性而且熱處理變形較小等一系列的優(yōu)點(diǎn)。

3.5.3 應用

馬氏體高強鋼在汽車(chē)領(lǐng)域主要應用于成形性要求不高的零件部分,如汽車(chē)前后左右門(mén)的防撞桿,ABC柱加強板,下邊地板通道,車(chē)頂加強梁等。

8.jpg

MS鋼在汽車(chē)部件中的應用

牌號

在汽車(chē)部件中的應用

MS 950/1200

Cross-members, side intrusion beams, bumper  beams, bumper reinforcements

MS 1150/1400

Rocker outer, side intrusion beams, bumper beams, bumper reinforcements

MS 1250/1500

Side intrusion beams, bumper beams, bumper reinforcements

3.6 硼鋼Boronbased hot-forming steel

3.6.1 顯微組織

熱成形鋼的原始顯微組織通常為鐵素體加珠光體組織,以及少量的碳化物顆粒和貝氏體組織。熱成形后,顯微組織主要為全馬氏體組織,以及少量的鐵素體、貝氏體或殘余奧氏體存在。

3.6.2 熱成形工藝原理

首先把常溫下強度為500~600MPa的高強度硼合金鋼板加熱到880~950℃,使之均勻奧氏體化,然后送入內部帶有冷卻系統的模具內沖壓成型,之后保壓快速冷卻淬火,使奧氏體轉變成馬氏體,成形件因而得到強化硬化,強度大幅度提高。該工藝被稱(chēng)為“沖壓硬化”技術(shù),分為直接工藝和間接工藝,兩種工藝大致相同。

3.6.3 化學(xué)成分

熱成形中使用最廣泛的22MnB5材料是一種低碳微合金含硼鋼,含有少量TiCrMoCuNi等合金元素。

B元素可顯著(zhù)提高鋼的淬透性,有利于獲得高強度的全馬氏體組織,添加量一般為15~30 μg/gB元素還可以提高過(guò)冷奧氏體的穩定性,降低珠光體和貝氏體的轉變速率,使過(guò)冷傲實(shí)體等溫轉變曲線(xiàn)右移,避免鐵素體和珠光體的形成。B元素主要通過(guò)奧氏體化時(shí)在晶界的偏析來(lái)影響鐵素體形核,從而提高鋼的強度。

3.6.4 性能特點(diǎn)

熱成形鋼屈服強度≥1000MPa,抗拉強度≥1500 MPa,斷后伸長(cháng)率≥5%,強度、硬度高、耐磨性好,具有極高的減重潛力、高碰撞吸收能力、高疲勞強度、高成形性等優(yōu)勢。

3.6.5 應用

熱成形鋼被廣泛用于車(chē)身骨架的關(guān)鍵部位,例如ABC柱,車(chē)門(mén)防撞梁等安全關(guān)鍵部位。


第二代先進(jìn)高強鋼


3.7 孿晶誘導塑性鋼Twinning Induced PlasticityTWIP

3.7.1 顯微組織

TWIP鋼的顯微組織為單一的奧氏體組織和少量退火孿晶組織

9.jpg 

 經(jīng)退火的TWIP鋼的顯微組織

3.7.2 變形機制

在外力的作用下,TWIP鋼的變形主要以孿生方式進(jìn)行,這是因為對于低層錯能的奧氏體晶粒,微小的變形就能使其內部產(chǎn)生大量的位錯與層錯缺陷,在切應力作用下位錯源所產(chǎn)生的大量位錯沿滑移面運動(dòng)時(shí)遇到了障礙,位錯被釘扎造成位錯的塞積和纏結,隨著(zhù)應力的增大位錯不斷堆集,應力集中愈來(lái)愈大,滑移系很難再滑移運動(dòng),不能再通過(guò)滑移方式來(lái)繼續塑性變形,當應力集中在孿生方向達到臨界應力值時(shí),晶體就開(kāi)始進(jìn)行孿晶變形。

隨著(zhù)應變量的增加,材料的顯微組織中出現大量的高密度形變孿晶,并產(chǎn)生二次孿晶。初生孿晶與次生孿晶交互穿越、切割基體,增加運動(dòng)的障礙,起到了細化晶粒的作用,極大提高了TWIP鋼的強度。高應變區首先形成的孿晶界阻礙了該區滑移的進(jìn)行,促使其它應變較低區域通過(guò)滑移進(jìn)行形變直至孿晶的形成,這使試樣發(fā)生均勻變形,顯著(zhù)推遲了縮頸的產(chǎn)生。同時(shí)對位錯運動(dòng)的阻礙也在一定程度上減少了加工硬化現象的發(fā)生,也使塑性變形能夠持續進(jìn)行,獲得更大的延伸效果。圖10TWIP鋼應力-應變曲線(xiàn),其中存在的兩種主要的形變機制。

10.jpg

TWIP鋼應力-應變曲線(xiàn)中兩種主要的形變機制

3.7.3 化學(xué)成分

TWIP鋼的Mn含量很高(17~24%),并含有少量C (<1 %), Si (<3%) Al (<3 %)

TWIP鋼中化學(xué)元素的作用

元素

作用

C

促使單相奧氏體組織的形成;

固溶強化保證其力學(xué)性能;

Si

固溶于奧氏體,其強化作用;

改變C在奧氏體中的溶解度;

較高時(shí)影響熱軋板表面質(zhì)量;

Mn

擴大奧氏體相區,穩定奧氏體組織;

影響合金的層錯能從而影響合金的變形機制,TRIP→TWIP

Al

提高層錯能;

固溶強化以細化奧氏體晶粒;

3.7.4 性能特點(diǎn)

TWIP鋼不僅展現出奧氏體鋼所具有良好的耐磨性和耐蝕性,而且在塑性變形的過(guò)程中表現出卓越的延展性、較高的強度和良好的成形性;同時(shí)具有高的能量吸收能力(是傳統高強鋼的2倍)。

3.7.5 應用

TWIP鋼用于改善汽車(chē)的碰撞安全性能;極高的翻邊成形性能,使之更容易制造出復雜形狀的零件。

8  TWIP鋼在汽車(chē)部件中的應用

牌號

在汽車(chē)部件中的應用

TWIP 500/900

A柱,駕駛艙,前測梁

TWIP 500/980

車(chē)輪,下部控制桿,前防撞梁和后防撞梁,B柱、車(chē)輪輪輞

TWIP 600/900

地板橫梁、駕駛艙

TWIP 750/1000

車(chē)門(mén)防撞梁

TWIP 950/1200

車(chē)門(mén)防撞梁

3.8 L-IP鋼(Light-Induced Plasticity Steel,誘導塑性輕鋼

在《Advanced High Strength Steels》(P369)定義L-IP鋼為carbon-free TWIP steels,即無(wú)碳或超低碳TWIP,其中以Fe-Mn-Si-Al系為代表,其中Mn含量為25%~30%Si含量為2%~4%Al含量為2%~4%

碳是奧氏體化穩定化元素,能顯著(zhù)提高TWIP鋼的合金系的層錯能有利于TWIP效應。碳含量較高時(shí)會(huì )引起鋼板焊接時(shí)的冷裂紋傾向,降低了材料的可焊接性病降低了HAZ韌性,此外中高碳含量的TWIP鋼中不可避免地出現大量的碳化物,顯著(zhù)降低材料的塑、韌性。

因此L-IP鋼的思路是以少量的強度降低為代價(jià),改善TWIP的焊接問(wèn)題。而為了保證TWIP效應,在無(wú)低碳或者超低碳TWIP鋼中通常會(huì )加入一定量的SiAl元素,除調節合金系的層錯能外,還可以強化奧氏體基體。

L-IP鋼的顯微組織為全奧氏體組織。

近年來(lái)的研究表明,超低碳鋼和無(wú)碳雙相高錳TWIP鋼塑性變形時(shí)同時(shí)會(huì )或相繼發(fā)生TRIPTWIP效應,兼具高強度和良好塑性。

11.jpg12.jpg

室溫下不同化學(xué)成分Fe-Mn-Al-Si TWIP鋼的力學(xué)性能

3.9 SIPShear Band Induced Plasticity steel,剪切帶強化鋼)

高錳鋼的變形機制根據堆垛層錯能(SFE)和相變的吉布斯自由能(△G)不同,可分為馬氏體相變、應變誘發(fā)相變(TRIP效應)、應變誘發(fā)孿晶(TWIP效應)和位錯滑移。變形機制如圖所示。

13.jpg

不同合金成分和溫度下高錳鋼

變形機制隨層錯能的轉變圖

Fe-Mn-Al-C系鋼中,隨著(zhù)Al的大量添加,鋼的層錯能很高(~100 mJ/m2),在變形時(shí)不發(fā)生馬氏體相變,也不發(fā)生機械孿生,而是出現大量均勻的剪切帶,剪切變形對總的塑性有重要貢獻,因此被稱(chēng)為剪切帶誘發(fā)塑性(Shear BandInduced Plasticity,簡(jiǎn)稱(chēng)SIP效應。因此這類(lèi)鋼也被稱(chēng)為SIP鋼。

這類(lèi)鋼的另一個(gè)特點(diǎn)是在奧氏體基體上均勻分布著(zhù)納米級碳化物,其間距很小,并與奧氏體基體共格,同時(shí)鋼中還有5%~15%的鐵素體。

SIP鋼具有優(yōu)良的成形性和抗碰撞性能,且密度僅為6.5~7g/cm3,減重效果好。


第三代先進(jìn)高強鋼


3.10 TBF鋼(TRIP Aided Bainitic Ferrite steels

TBF鋼為相變誘導塑性鐵貝氏體素體鋼,也稱(chēng)為Carbide-free bainitic steels(無(wú)碳化物貝氏體鋼),TRIP with bainitic matrix(貝氏體基相變誘導塑性鋼)或super-bainitic TRIP(超級貝氏體基相變誘導塑性鋼)。

3.10.1顯微組織

TBF鋼的組織特征是精細規整的無(wú)碳化物貝氏體鐵素體板條束、分布在貝氏體鐵素體基體上板條束間的薄膜狀殘余奧氏體與塊狀殘余奧氏體,同時(shí)也存在有非常少量的回火馬氏體。

14.jpg

TBF鋼的SEM顯微照片

F–先共析鐵素體,B–無(wú)碳化物貝氏體,A–殘余奧氏體)

3.10.2性能特點(diǎn)

TBF鋼中有亞穩態(tài)殘余奧氏體(體積分數約為10%-30%)的存在,不僅具有較好的超高強度和塑性匹配,而且具有較高的疲勞強度、較好的沖擊性能,翻邊擴孔性能和抗氫脆性能。

設計目標:屈服強度達1.5GPa以上,抗拉強度達1.77~2.2GPa,斷后伸長(cháng)率達15%

3.10.3化學(xué)成分

TBF鋼中的C元素為0.2~0.4%

TBF鋼中化學(xué)元素的作用

元素

作用

C

防止鐵素體在初始冷卻階段形成;

延緩貝氏體轉變,阻礙貝氏體長(cháng)大

MoCr

延緩貝氏體轉變,提高抗拉強度;

阻礙鐵素體和珠光體形成;

Mn

降低貝氏體開(kāi)始轉變點(diǎn),提高抗拉強度;

延緩奧氏體分解,阻礙鐵素體形成;

Nb

細化奧氏體晶粒

B

阻礙貝氏體轉變

3.10.4應用

如圖所示。


15.jpg

ArcelorMittalTBF鋼使用示例

3.11 Q&P鋼(Quenching-Partitioning Steel

3.11.1 顯微組織

Q&P鋼的顯微組織為貧碳的板條馬氏體和氟碳的殘余奧氏體(5~15%)。馬氏體組織保證了鋼的強度,殘留奧氏體在變形過(guò)程中發(fā)生相變誘發(fā)塑性,從而提高鋼的塑性。

16.jpg

Q&P鋼的顯微組織

3.11.2 性能特點(diǎn)

Q&P鋼具有較高的屈強比(YS/TS)、高強度和較高延伸率的新鋼種,設計抗拉強度為800~1500MPa,伸長(cháng)率15%~40%

3.11.3 淬火配分工藝

設計思路:通過(guò)碳的配分,實(shí)現奧氏體富碳,從而穩定奧氏體。然后,利用室溫下奧氏體的TIRP效應獲得相對高塑性。

淬火配分工藝首先將鋼材加熱到Ac3以上的某一溫度,使其完全奧氏體化,該溫度稱(chēng)之為奧氏體化溫度AT,然后以大于馬氏體轉變臨界冷速淬火到MsMf之間的某一溫度QT,形成馬氏體和殘余奧氏體的混合組織;接著(zhù)升溫到低于Ms的配分溫度PT保溫一定時(shí)間,使碳元素從過(guò)飽和馬氏體中的碳擴散到殘余奧氏體中,增加奧氏體穩定性,從而在隨后的淬火過(guò)程中保留至室溫。

17.jpg

Q&P工藝和組織演變示意圖

3.12 中錳鋼(Medium Mn-Trip

3.12.1顯微組織

中錳鋼ART鋼的顯微組織為馬氏體或回火馬氏體基體上含有大量片狀殘留奧氏體或超細鐵素體。

18.jpg

中錳ART鋼的顯微組織

3.12.2奧氏體逆轉變方法(Austenite reverted transformation, ART

ART工藝首先將鋼淬火得到淬火馬氏體,然后在鐵素體+奧氏體兩相區保溫退火獲得逆生奧氏體,并伴隨溶質(zhì)元素在奧氏體中的富集及再配分活動(dòng),使殘余奧氏體穩定性提高保留到室溫。

3.12.3化學(xué)成分

由于提高鋼中亞穩奧氏體的含量是提高鋼的強塑積的關(guān)鍵因素,因此需要提高亞穩奧氏體的含量。

Mn元素可擴大奧氏體相區且有效促進(jìn)奧氏體的形成及組織超細化。因此Mn元素的置換擴散與配分和奧氏體逆轉變是最終以多相和亞微米尺度的超細基體為特點(diǎn)的體心立方(BCC)的鐵素體組織與面心立方(FCC)殘余奧氏體復合組織的關(guān)鍵。

實(shí)驗研究的中錳鋼的成分設計為C的質(zhì)量分數為0.15%-0.60%Mn的質(zhì)量分數為4%-10%,部分研究人員在中錳鋼中加入了SiAl,二者的質(zhì)量分數基本控制在1.5%-3.0%范圍內。此外,少數研究中添加了Mo和微合金化元素V,旨在提高晶界強度和細化基體晶粒尺寸。



四、先進(jìn)高強鋼的發(fā)展趨勢及研究熱點(diǎn)

下一代先進(jìn)高強鋼的開(kāi)發(fā)應具備如下條件:低碳(高的焊接性)、低成本(低合金量的添加)、高成形性、易于裝備和維修。今后材料的設計開(kāi)發(fā),應從全流程的角度來(lái)考慮。需求會(huì )促進(jìn)相關(guān)技術(shù)的進(jìn)步,技術(shù)的進(jìn)步同樣會(huì )刺激需求的提高。對于下一步先進(jìn)高強鋼的發(fā)展方向和研究議題,在大學(xué)和科研院所等機構提出如下研究領(lǐng)域:

先進(jìn)高強鋼的微觀(guān)組織和機械性能;

先進(jìn)高強鋼的碳擴散過(guò)程;

先進(jìn)高強鋼的粒子尺寸及界面效應;

先進(jìn)高強鋼中納米針狀鐵素體型雙相鋼;

高強高塑貝氏體鋼;

先進(jìn)高強鋼的成形及回彈行為;

先進(jìn)高強鋼的響應模型。




參考文獻:

1、《Advanced High-Strength Steels Application Guidelines Version 6.0》;

2、《Advanced High Strenght Sheet Steels-Physical Metallurgy, Design, Processing and  Properties》(2015);

3、國內外期刊及學(xué)位論文若干;

4、網(wǎng)頁(yè)資料整理。


標簽:

聯(lián)系我們 0510-83591626 18921519533

江蘇省無(wú)錫市錫山區華夏中路3號文華國際

手機版

Copyright ? 2017-2021 江蘇隱石實(shí)驗科技有限公司 All Rights Reserved   備案號:蘇ICP備2021030923號-2   技術(shù)支持:無(wú)錫網(wǎng)站建設公司迅誠科技